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Abstract 

A general class of helical disorder exists which can be 
described by cumulative random angular motions of 
subunits. This disorder affects layer-line intensities and 
widths by a factor proportional to n 2, the square of the 
order of the layer line. The result explains several 
features of actin and polytetrafluoroethylene (Teflon) 
transforms, and may be relevant to other helical 
systems. 

We have described the angular motions of subunits in 
the F-actin helix (Egelman, Francis & DeRosier, 1982) 
based upon image analysis of electron micrographs. In 
this paper we will present an analytic treatment of the 
effect of this form of disorder on the transform of such 
a structure. Because this treatment appears to explain 
features of other disordered systems (such as Teflon 
above the 292 K transition), we believe that it may be 
applicable to many helical structures. 

Whereas the subunit positions in an ideal helix can 
be described by 
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!~-= r 0 

zj = j A z  

q/j = ~j _ ~ + dq/ = j AqJ, 

we will deal with a particular form of disordered helix 
where subunit positions are described by 

ri = ro 

z~ = j  Az 

q/i= ~i- l  + Aq/ + fi i=J Aq j +  )-J, ilk. (1) 
/, i 

Fig. 1 shows a model of a helix described by these 
equations, and Table 1 contains the first ten values of 6i 
for one of the filaments in Fig. 1. 

The recursive relation in (1) is nothing more than a 
correlated random walk in ~,, and can be param- 
eterized in terms of the first moment and the square 
root of the second moment of the distribution of 6Ss: 

(6.~): ( a i ) ' : = a  ........ . 
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We will define (3 j )  -- O. 
Thus,  for a given ~i, we will expect to find ~/+ 1 = 

gtj + A~ _+ 6r.,,,.~., ~./+2 = gtj + 2Agt +_ 2 '/2 ~r.,,,.s., etc.  

When 6r.,,,.~. is small with respect to AqJ, angular  

Fig. 1. A computer-generated model shows how cumulative angular 
disorder affects the appearance of a helical fiber. Spheres have 
been arranged according to the helical geometry of actin (approxi- 
mately 13 subunits in six turns of a left-handed 59 A pitch helix). 
In (a), the placement of subunits is regular. In (b)-(d), the 
angular rotation between subunits has an r.m.s, fluctuation of 
10% and these fluctuations have a Gaussian distribution. In all 
filaments shown, the axial rise per subunit is fixed, and all four 
filaments begin at the bottom with their first subunit in the same 
angular position. Because the deviations of the subunit angular 
positions are cumulative, the points where the right-handed two- 
start helices cross over (marked by the arrows) have been almost 
randomized in (b)-(d). 

correlat ion will be maintained over many subunits.  As 
6~..,.~. grows with respect to A~', the correlat ion length 
will obviously fall. 

The t ransform of  both a perfect helix and our 
disordered helix can be understood in terms of  a 
product  of the t ransform of an individual subunit  
multiplied by the t ransform of  the helical lattice. In 
deriving the Fourier  t ransform of the disordered helix, 
we can ignore the radial component ,  since this disorder 
will not affect it. The t ransform of the remaining axial 
and azimuthal  components  of  the helix generates a 
sampling function C(n,Z) which gives rise to layer 
lines. Any  given layer line will have an order n 
associated with it which is related to the azimuthal  
symmetry  of  the corresponding helix (n -- 1 for a 
one-start ,  n = 2 for a two-start ,  etc.). We will calculate 
this sampling function and follow the s tandard con- 
vention where Z = l/c; l = layer-line number,  
c = helical repeat. For  the ideal helix, we have 

C(n,Z) = X e x p [ i ( - n ~ / +  2nZz/)I (2) 
i J 

using 
~ j = j  Aqj 

z i = j  Az =jpAq//2n.  

where p is the pitch of  a one-start  helix, 

.X 

C(n,Z) = )" exp[ i(-njA~u + jZpA~u)] 
i 1 

A 

= )" exp[ i ( j A ~ ( p Z  - n)[. 
j = l  

The corresponding C(n,Z) for the disordered helix 
described by (1) is 

' [( 01 C(n,Z) = ~ exp i --njA~u- n ~k + 27rZz 
j - I  A l 

The exact solution of  this equation depends upon the 
detailed knowledge of  the ~k's, including both their 
individual values as well as their sequence. However~ 
using statistical methods,  we can solve for the expec- 
tat ion value, (C(n ,Z))  in terms of  another  expectation 
value, (6~)v2. F rom (2) we can see that  for a given n 
there will exist a family of  Z0.,,'s (layer lines) such that  

A~(PZo. . - n) = 2gm; m = 0 , + l , _ + 2  . . . . .  

It can easily be shown that  the disorder term in (3) will 
not shift the expectation value of  these Z0., 's. This 
tbllows from the expectation value of the sum over the 
3t,'s being equal to zero. Therefore, the expectat ion 
value for the layer-line peak will always be at the same 
position it would be in the absence of disorder. 
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Thus,  at the expected layer-line peaks, (3) reduces to 

C(n,Zo. , , )= e x p - i n  ~ c~ . (4) 
/ I h I 

when rSr.,,..,. = O, IC(n,Z)l  = N. 
For the more general situation (b~.,,.~. ~- 0) it is 

helpful to rewrite the double summation in (4) as a 
single sum: 

\ 

C(n,Zo.,~)= ~ exp(--ifli), (5) 
/ I 

where 

( ( ~ - g + , ) : ) '  '= n4,,,.~ 

The magnitude of  this summation will build as a 
correlated r andom walk. That  is, for nat.. ..... signifi- 
cantly less than 2re (for actin, we have experimentally 
determined 6~.m.s. to be of the order of 10°), successive 
terms in the summat ion  will involve the addition of  
vectors (whose angle is given by fl) which are quite well 
correlated in angle. Thus,  these terms will build as N, 
the number  of  steps. However,  over many  steps, the 
vectors will appear to be doing a random walk in the 
complex plane. In this limit, the summat ion should 
grow a s  N ]'2 

In Fig. 2, the summat ion of  (5) is performed for the 
first ten subunits of Fig. 1, filament b. One can see that  
for n = 3 the correlat ion between steps in the complex 
plane begins to die off much more rapidly than for 
n = 1. While both curves (n = 1 and n = 3) have a 
random component  in their growth, it can be seen that 
for N = 10 there is still a strong correlat ion in both 
between the first step and the tenth. This description of 
a correlated random walk is isomorphic with the 
expected end-to-end distance of  a long fi lamentous 
polymer,  which is bending in solution. Over a very long 
length the filament behaves as a random coil, while over 
short stretches the filament is best approximated as a 
relatively rigid rod. The mean squared end-to-end 
distance of  such a flexible polymer  can be written as 
(Landau & Lifschitz, 1958) 

Table 1. Model  values f o r  cumulat ive  disorder 

J at (°) /~ O~ = 1) (°) fit (n = 3) (°) 
1 12.5 12.5 37.4 
2 15.8 28.3 84.8 
3 -15.4 12-9 38.6 
4 -4.9 7-9 23.8 
5 -7.8 0. I 0.4 
6 6.3 6.4 19.2 
7 -9.9 -3.5 -10.6 
8 7.6 4.0 12.1 
9 6.6 10.6 31.8 

10 2.6 13.2 39.5 

These are the values of ~i for the first ten subunits of Fig. 1, 
filament b. The corresponding fli's are as defined in equation (5). 

where b is a correlat ion length and L is the contour  
length along the polymer.  The expectation value of  
fC(n,Zo,,)[ 2 will behave in the same manner  as ( R 2 ) ,  
and we can therefore write 

2 . . . .  1 + e :~'" (6) ( IC(n 'Z° '") l  ) --2 a 

where N is the number  of  subunits (analogous to L). 
We have redefined the bending correlat ion length b in 
terms of  a diffraction correlation length a, 2b = a, for 
later simplicity. We can define this new correlat ion 
length by once again referring to polymer bending, in 
which we find the relationship (Landau & Lifshitz, 
1958) 

e - r ' h=  (cos O(L)),  

where 0 is the angle between tangents to a filament at 
two points separated by the contour  length L. We can 
now write a corresponding equation for our walk in the 
complex plane: 

(cos(nak))  = e >", 

where the mean angular  deviation after one subunit 
(N = 1) is n3r.,,,.~.. For  n3r.,,.~ ~ 1, we can expand this 
and we have 

a =  4/n 2 6~.,, .... . 

The most  unusual  feature of  this equation is that  the 
correlat ion length varies for different layer lines. For  
example, we determined that  for actin 6,.m.s. - 10°. On 
the sixth layer line of  actin where n = - 1 ,  a ~ = 131 
subunits while on the first layer line, where n = 2, 
a 2 = 33 subunits. 

It is impor tant  to note that  the intensities of  these 
layer lines will be differently affected. We can simplify 

L 
Im 

Re 

~ n =  3 
Fig. 2. The growth of the sampling function, C(n,Zo.,,), proceeds as 

a correlated random walk in the complex plane. We have plotted 
here the summation in equation (5) for the first ten subunits of 
Fig. 1, filament b. The values of ~j and fli for these subunits are 
given in Table 1. 
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(6) for the case where N >> a, ,  that is, the filaments we 
are diffracting from are longer than the correlation 
length: 

(I C(n,Zo.n)l 2) = aN = 4 N / n  2 ~.,, .... . 

Thus, when one is dealing with lengths significantly 
greater than the correlation length an important feature 
emerges from this equation. The peak layer-line 
intensities (except for meridional reflections which will 
be unaffected by this disorder) will be weighted by a 
factor of l /n  2. Further, since the total intensity of 
scattering will still be equal to N for both the ordered 
and disordered case, the width of a layer line in the 
meridional direction will be independent of N when 
N ~> a. Since the peak intensity is equal to 4 N / n  2 ~2.m.~. 
the width will be equal to n 2 t~2/4 (= 1/a) in this regime. 
Thus the helical object diffracts as a mosaic of helical 
stretches of length a n where the length is different for 
different layer lines. 

All of these statistical predictions have been con- 
firmed using Monte Carlo simulations of helical 
filaments whose geometry is described by (1). These 
simulations have involved up to one million subunits, 
and their results in terms of layer-line intensities and 
widths have been in excellent agreement with our 
analytical treatment. 

The practical consequences of these features are 
quite significant for X-ray diffraction. As n increases, 
not only will the peak intensity be decreased, but the 
increased width of the layer line will help to make it 
indistinguishable from the background incoherent 
scatter. 

We have dealt elsewhere (Egelman et al., 1982) with 
how the predictions of this formalism successfully 
describe several features of the actin transform. We 
would like to point out here that this formalism is 
equally relevant for describing the unsampled fiber 
pattern of polytetrafluoroethylene after the 292 and 
303 K transitions. It has been understood for a 
considerable time from X-ray diffraction (Clark & 
Muus, 1962b) and NMR (Hyndman & Origlio, 1960) 
that individual chains in polytetrafluoroethylene 
crystals undergo torsional motions after the 293 K 
transition and that these motions appear to be of even 
greater magnitude after the 303 K transition. A 
previous treatment (Clark & Muus, 1962a)of the effect 
of this disorder dealt only with the crystal Bragg 
reflections (that is, the sampled intensities on layer 
lines). We believe that our treatment extends this to 
explain the appearance of the unsampled continuous 
layer-line intensities arising from the disorder. Because 
the meridional reflections remain sharp after both of 
these transitions, it is reasonable to believe that our 
equation (1) provides a good description of the motions 
in the Teflon chains. The n = 2 (l = I) continuous peak 

intensity seems to disappear after the 292 K 
transition, while the n = 1 reflections on the sixth and 
seventh layer lines themselves weaken or disappear 
after the 303 K transition. This is exactly the prediction 
of our formalism, where the correlation length for all 
n 4= 0 falls as the temperature increases. For any given 
temperature, the correlation length for a layer line will 
be proportional to 1/n 2. 

That our equation (1) describes the disorder in 
Teflon fairly well is further supported by model- 
potential-energy calculations (DeSantis, Giglio, Liquori 
& Ripamonti, 1963; McMahon & McCullough, 1965; 
Bates, 1967; Bates & Stockmayer, 1968) for free 
filaments which yield a relatively shallow potential- 
energy well for rotations about the C - C  bond. For 
T = 300 K, a shift of k T  from the most stable bond 
angle (about 165 ° ) appears to be equal to about +8 ° 
(McMahon & McCullough, 1965, Fig. 2). These shifts 
can be mapped into the helical coordinates ~' and z. 
The absolute shift in d~u (the angular rotation between 
subunits) is about the same as the shift in the bond 
angle, but the fractional change in A~u for this amount 
of rotation is 15 times greater than the corresponding 
fractional change in the axial rise d z  of each subunit. 
Therefore, just like actin, almost all of the disorder is 
azimuthal. 

Because equation (1) appears to provide a reason- 
able approximation of these two helical systems (actin 
and Teflon), it suggests that this form of disorder may 
be a general feature of other filamentous polymers 
where the number of connections between subunits is 
limited. The essential requirement for this formalism to 
be applicable is that the angular correlation for subunits 
must die off faster than the axial correlation. The helical 
structures of both actin and polytetrafluoroethylene 
appear to obey this requirement. 
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